Unparticle Phenomenology

Wai-Yee Keung, U. Illinois at Chicago

In collaboration with Kingman Cheung and T.C. Yuan

PRL 99, 051803 (2007)

PHYSICAL REVIEW LETTERS

week ending 3 AUGUST 2007

Collider Signals of Unparticle Physics

Kingman Cheung, 1,2 Wai-Yee Keung,3 and Tzu-Chiang Yuan1

PHYSICAL REVIEW D 76, 055003 (2007)

Collider phenomenology of unparticle physics

Kingman Cheung, 1,2 Wai-Yee Keung, 3 and Tzu-Chiang Yuan 1

Fermilab seminar Oct 4, 2007

Ref.

- H. Georgi, arXiv:0703.260, 1st pheno study
- H. Georgi, arXiv:0704.2457, on propagator

Cheung, K, Yuan: arXiv:0704.2588, PRL

and 0706.3155 on production, propagator, and g-2

C.H. Chen and C.Q. Geng, on CP violation

M. Luo and G. Zhu, on spin-half

Fox et al on Scaling breaking by Higgs

Goldberg and Nath on Ungravity

M. Neubert on QCD emulating Unparticle

Freitas and Wyler on Astrophysical constraint

Banks and Zaks

T. Banks, A. Zaks / Phase structure of vector-like gauge theories

$$\begin{split} \beta(g) &= - \left(\beta_0 \frac{g^3}{16\pi^2} + \beta_1 \frac{g^5}{(16\pi^2)^2} + \beta_2 \frac{g^7}{(16\pi^2)^3} \right) \\ \beta_0 &= 11 - \frac{4}{3}T(R)N_F, \\ \beta_1 &= 102 - (20 + 4C_2(R))T(R)N_F, \end{split}$$

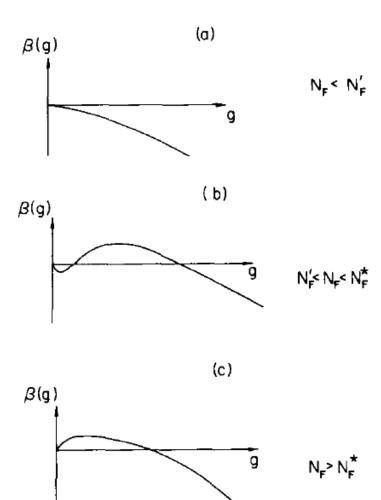


Fig. 1. 2 zero β function.

Phase Space and Spectral density

$$d_n(\text{PS of massless particles}) = A_n s_n^{n-2} , \quad A_n = \frac{16\pi^2 \sqrt{\pi}}{(2\pi)^{2n}} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(n-1)\Gamma(2n)} .$$

$$A_{n\to 1} = 2\pi(n-1) , \quad A_2 = \frac{1}{8\pi} , \quad A_3 = \frac{1}{256\pi^3}$$

$$A_n s^{n-1} \stackrel{n \to 1+\epsilon}{\longrightarrow} \frac{2\pi\epsilon}{s^{1-\epsilon}} \to 2\pi\delta(s) \quad \epsilon \int_{0+}^{\infty} ds/s^{1-\epsilon} = s^{\epsilon}|_{0+}^{\infty} = 1.$$

$$\langle 0|O_{\mathcal{U}}(x)O_{\mathcal{U}}^{\dagger}(0)|0\rangle = \int \frac{d^4P}{(2\pi)^4} e^{-iP\cdot x} |\langle 0|O_{\mathcal{U}}(0)|P\rangle|^2 \rho(P^2)$$

$$|\langle 0| O_{\mathcal{U}}(0)| P\rangle|^2 \rho(P^2) \ = \ A_{d_{\mathcal{U}}} \, \theta(P^0) \, \theta(P^2) \, (P^2)^{d_{\mathcal{U}}-2}$$

$$\lambda_0 \frac{1}{\Lambda_{\mathcal{U}}^{du}} G_{\alpha\beta} G^{\alpha\beta} O_{\mathcal{U}} \quad , \quad \lambda_1 \frac{1}{\Lambda_{\mathcal{U}}^{du-1}} \bar{f} \gamma_{\mu} f O_{\mathcal{U}}^{\mu} \quad \lambda_2 \frac{1}{\Lambda_{\mathcal{U}}^{du}} G_{\mu\alpha} G_{\nu}^{\alpha} O_{\mathcal{U}}^{\mu\nu}$$

Scales

$$\frac{1}{M^{d_{SM}+d_{BZ}-4}}\mathcal{O}_{BZ}\mathcal{O}_{SM} \longrightarrow C\frac{\Lambda^{d_{BZ}-d_{U}}}{M^{d_{SM}+d_{BZ}-4}}\mathcal{O}_{U}\mathcal{O}_{SM}$$

$$\longrightarrow \underbrace{\left(C\frac{\Lambda^{d_{SM}+d_{BZ}-4}}{M^{d_{SM}+d_{BZ}-4}}\right)}_{\Lambda}\frac{1}{\Lambda^{d_{U}+(d_{SM}-4)}}\mathcal{O}_{U}\mathcal{O}_{SM}$$

Example

$$\lambda_1 \frac{1}{\Lambda^{d_u-1}} \bar{f} \gamma_\mu f \mathcal{O}^\mu , \quad \lambda_0 \frac{1}{\Lambda^{d_u}} G^{\alpha\beta} G_{\alpha\beta} \mathcal{O} .$$

Production

$$\mathcal{O}_{\mathrm{SM}} \, \mathcal{O}_{\mathcal{B}\mathcal{Z}} / M_{\mathcal{U}}^k \qquad (k > 0)$$

$$gg \rightarrow g\mathcal{U}, q\bar{q} \rightarrow g\mathcal{U},$$

$$qg \rightarrow q\mathcal{U}, \ \bar{q}g \rightarrow \bar{q}\mathcal{U}.$$

$$(C_{\mathcal{O}_{\mathcal{U}}}\Lambda^{d_{\mathcal{B}\mathcal{Z}}-d_{\mathcal{U}}}/M_{\mathcal{U}}^{k})\mathcal{O}_{\mathrm{SM}}\mathcal{O}_{\mathcal{U}}$$

$$\frac{d^2\hat{\sigma}}{d\hat{t}dP_{\mathcal{U}}^2} = \frac{1}{16\pi\hat{s}^2} |\overline{\mathcal{M}}|^2 \frac{1}{2\pi} A_{du} \left(\frac{P_{\mathcal{U}}^2}{\Lambda_{\mathcal{U}}^2}\right)^{du-2} \frac{1}{\Lambda_{\mathcal{U}}^2}$$

$$|\overline{\mathcal{M}}(gg \to g\mathcal{U})|^2 = \frac{1536\pi\alpha_s}{4 \cdot 8 \cdot 8} \lambda_0^2 \frac{(P_{\mathcal{U}}^2)^4 + \hat{s}^4 + \hat{t}^4 + \hat{u}^4}{\hat{s}\hat{t}\hat{u}\Lambda_{\mathcal{U}}^2}$$

Ellis, Hinchliffe, Sodate, Bij on the gg→gH

$$|\overline{\mathcal{M}}(q\bar{q} \to g\mathcal{U})|^2 = \frac{8}{9}g_s^2 \lambda_1^2 \frac{(\hat{t} - P_u^2)^2 + (\hat{u} - P_u^2)^2}{\hat{t}\hat{u}}$$

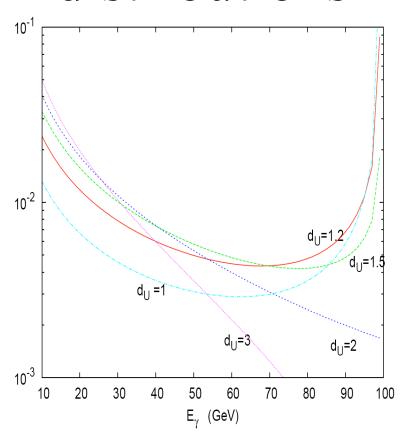
$$e^-(p_1) \ e^+(p_2) \rightarrow \gamma(k_1) \ \mathcal{U}(P_{\mathcal{U}})$$

$$|\overline{\mathcal{M}}(qg \to q\mathcal{U})|^2 = -\frac{1}{3}g_s^2 \lambda_1^2 \frac{(\hat{t} - P_u^2)^2 + (\hat{s} - P_u^2)^2}{\hat{s}\hat{t}}$$

$$|\overline{\mathcal{M}}|^2 = 2e^2 Q_e^2 \lambda_1^2 \frac{u^2 + t^2 + 2s P_{\mathcal{U}}^2}{ut} \qquad d\sigma = \frac{1}{2s} |\overline{\mathcal{M}}|^2 \frac{E_{\gamma} A_{d_{\mathcal{U}}}}{16\pi^3 \Lambda_{\mathcal{U}}^2} \left(\frac{P_{\mathcal{U}}^2}{\Lambda_{\mathcal{U}}^2}\right)^{d_{\mathcal{U}} - 2} dE_{\gamma} d\Omega$$

$$P_{\mathcal{U}}^2 = s - 2\sqrt{s}\,E_{\gamma}$$

distributions



: Normalized mono-photon energy spectrum of $\forall \gamma \mathcal{U}$ for $d_{\mathcal{U}} = 1, 1.2, 1.5, 2$ and 3 at $\sqrt{s} = 200$ GeV. e imposed $|\cos \theta_{\gamma}| < 0.95$.

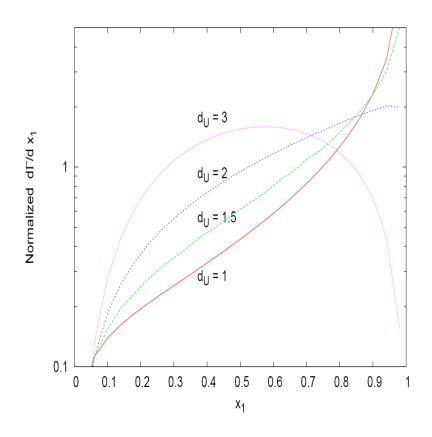


FIG. 1: Normalized decay rate of $Z \to q\bar{q}\mathcal{U}$ versus $x_1 = 2E_f/M_Z$ for different values of $d_{\mathcal{U}} = 1, 1.5, 2, \text{ and } 3.$

Experimental Constraint from LEP2

LEP Coll. have measured single-photon plus missing energy in the context of ADD, GMSB, and other models that can produce a single γ plus $\not\!\!E_T$ in the final state.

We use the strongest from L3 at $\sqrt{s} = 207$ GeV:

$$\sigma^{95} \simeq 0.2 \text{ pb} \text{ under } E_{\gamma} > 5 \text{ GeV}, \quad |\cos \theta_{\gamma}| < 0.97$$

Limits on $\Lambda_{\mathcal{U}}$ from single-photon production

$d_{\mathcal{U}}$	$\Lambda_{\mathcal{U}} \ (\mathrm{TeV})$
2.0	1.35
1.8	4
1.6	23
1.4	660

Propagator

(4) Drell-Yan process: Virtual exchange of unparticle corresponding to the vector operator $O^{\mu}_{\mathcal{U}}$ can result in the following 4-fermion interaction

$$\mathcal{M}^{4f} = \lambda_1^2 Z_{du} \frac{1}{\Lambda_{\mathcal{U}}^2} \left(-\frac{P_{\mathcal{U}}^2}{\Lambda_{\mathcal{U}}^2} \right)^{du-2} (\bar{f}_1 \gamma_{\mu} f_2) (\bar{f}_3 \gamma^{\mu} f_4) (11)$$

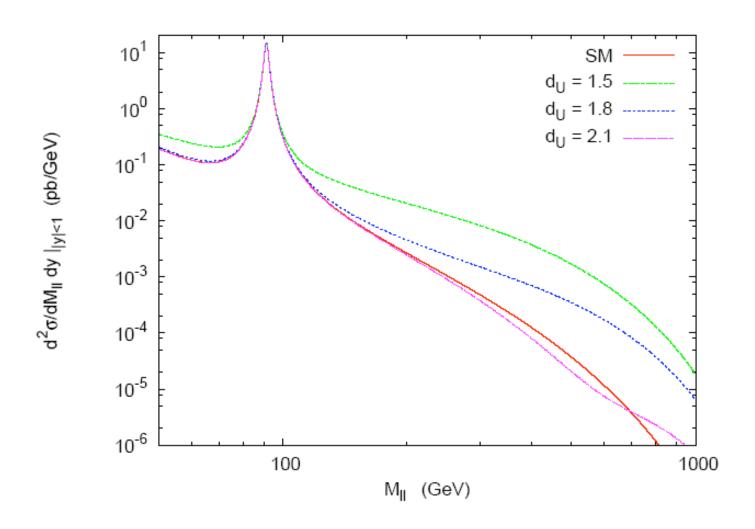
$$(re^{i\theta})^{du-2} = r^{du-2}e^{i\theta(du-2)}$$

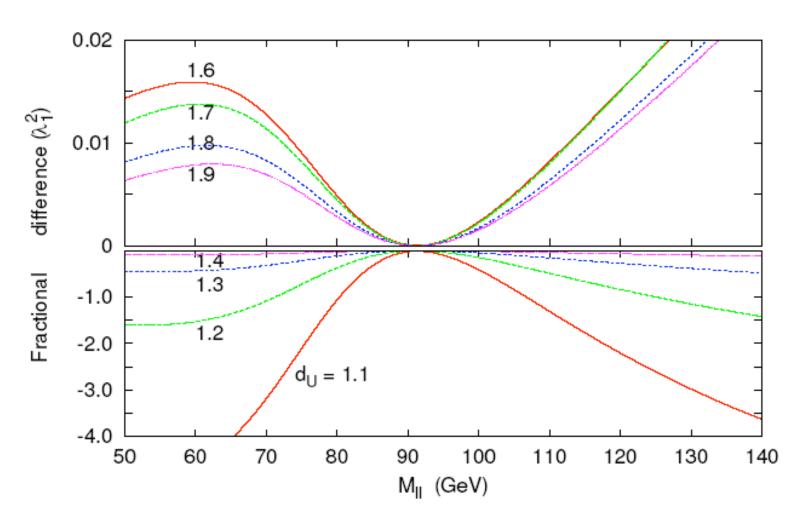
for r > 0 and $-\pi \le \theta < \pi$. Using the Källen-Lehmann spectral representation formula, one can derive $Z_{d_{\mathcal{U}}}$ as

$$Z_{du} = \frac{A_{du}}{2\sin(d_{\mathcal{U}}\pi)}$$
 for $d_{\mathcal{U}} < 2$. (12)

The (-) sign in front of $P_{\mathcal{U}}^2$ of the unparticle propagator in Eq.(11) gives rise to a phase factor $e^{-i\pi d_{\mathcal{U}}}$ for time-like momentum $P_{\mathcal{U}}^2 > 0$, but not for space-like momentum $P_{\mathcal{U}}^2 < 0$. Note that $P_{\mathcal{U}}^2$ is taken as the \hat{s} for an s channel

Drell -Yan





Interference of \mathcal{U} with γ , Z propagators

$$\begin{array}{c}
\uparrow, k, \mu \\
p \\
p \\
e
\end{array}$$

$$\begin{array}{c}
\uparrow, k, \mu \\
p_2 - \ell \\
p'
\end{array}$$

g-2

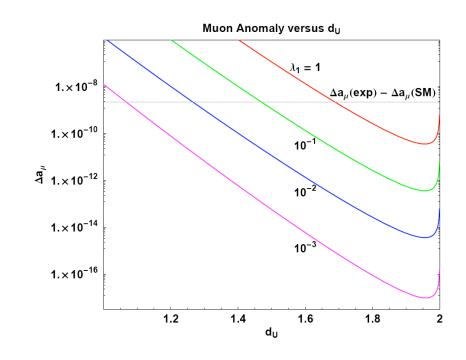
$$i\mathcal{M} = \frac{ie^3}{16\pi^2} \int \frac{q_E^2 dq_E^2 4m i\sigma^{\mu k}}{-[q_E^2 + (1-z)^2 m^2]^3} z(1-z) dz dx$$

$$i\mathcal{M} = e\left(\frac{\alpha}{\pi}\right) \int_0^1 \frac{zdz}{1-z} \int_0^{1-z} dx \frac{\sigma^{\mu k}}{2m} = e\left(\frac{\alpha}{2\pi}\right) \frac{\sigma^{\mu k}}{2m}$$

$$-\frac{i}{16\pi^2} \int \frac{q_E^2 dq_E^2}{(q_E^2 + \mu^2)^{2+\beta}} = -\frac{i}{16\pi^2 (\mu^2)^\beta} \int_0^\infty \frac{x dx}{(x+1)^{2+\beta}} = -\frac{i}{32\pi^2 (\mu^2)^\beta} \left(\frac{2}{\beta (1+\beta)}\right)$$

$$\frac{1}{A_1 A_2 A_3^{\beta}} = \frac{z^{\beta - 1} dx dy dz \delta (1 - x - y - z)}{(x A_1 + y A_2 + z A_3)^{2 + \beta}} \frac{\Gamma(2 + \beta)}{(\beta)}$$

$$a_U = \frac{\lambda_1^2}{4\pi^2} \left(-\frac{A_d}{2\sin(\pi d)} \right) \left(\frac{m^2}{\Lambda} \right)^{d-1} \frac{\Gamma(3-d)\Gamma(2d-1)}{(2+d)}$$



Uncompton

$$\sigma_T = \frac{8\pi\alpha^2}{3m^2}\sqrt{1 - \mu^2/\omega^2}$$

$$d\sigma_L = \frac{1}{2} \left(\frac{\alpha}{m}\right)^2 \sqrt{1 - \frac{\mu^2}{\omega^2}} \left(\frac{\mu}{\omega}\right)^2 \sin^2 \theta d\Omega$$
$$\bar{\mathbf{\varepsilon}}_L' \cdot \mathbf{\epsilon}_{\uparrow} = (\mu/\omega) \sin \theta$$

$$\epsilon'_L = \mu^{-1}(\sqrt{\omega^2 - \mu^2}, \omega \hat{\boldsymbol{k}}')$$
, with $\epsilon'_L \cdot \epsilon'_L = -1$, $\epsilon'_L \cdot k' = 0$
 ϵ'_L by $\bar{\varepsilon}_L = \epsilon'_L - \beta k'$ $\beta = \frac{1}{\mu \omega} \sqrt{\omega^2 - \mu^2}$ $\bar{\varepsilon}'_L = (0, \hat{\boldsymbol{k}}' \mu / \omega)$

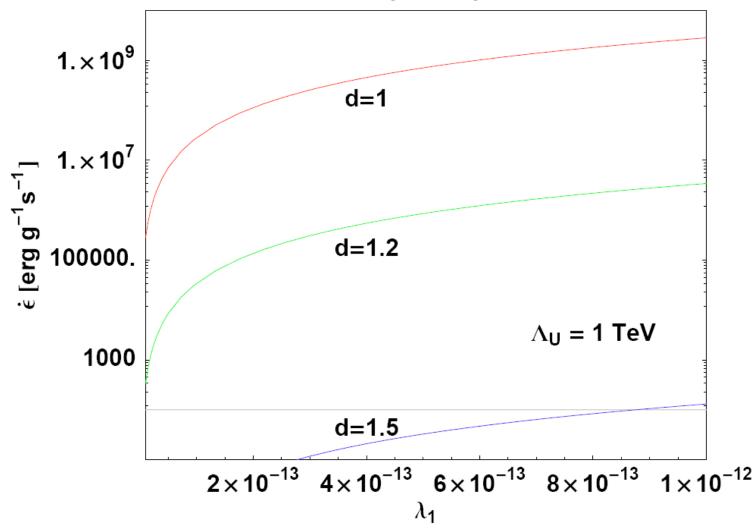
$$\sigma_U = \int_0^{\omega^2} \frac{2\alpha \lambda_1^2}{3m_e^2} \sqrt{1 - \frac{P^2}{\omega^2}} \left(1 + \frac{1}{2} \frac{P^2}{\omega^2} \right) \frac{dP^2}{2\pi \Lambda^2} A_d \left(\frac{P^2}{\Lambda^2} \right)^{d-2}$$

$$L = \left\langle \frac{Z}{Am_N} \right\rangle \frac{2}{(2\pi)^3} \int E \frac{4\pi E^2 dE \sigma(E)}{\exp\left(\frac{E}{kT}\right) - 1}$$

$$L = m_e^2 \left\langle \frac{Z}{Am_N} \right\rangle \left(\frac{kT}{m_e}\right)^{2d+2} \left(\frac{m_e^2}{\Lambda^2}\right)^{d-1} \frac{\alpha \lambda_1^2}{3\pi^3} A_d \left[B(\frac{3}{2}, d-1) + \frac{1}{2}B(\frac{3}{2}, d)\right] \int_0^\infty \frac{x^{2d+1} dx}{e^x - 1}$$

constraint

Electron Un-Compton (Spin 1) (RedGiant)



Conclusion

- What is the UNPARTICLE?
- Can it be deconstructed? (Stephanov)
- Is it more than a spectator in the EW sector?
- What is its role in cosmology? (Davoudiasl)

Unconstruction

$$E^2 = \mathbf{p}^2 + \sum_{i=1}^{n} (k_i)^2$$

$$\sum_{\vec{k}} \longrightarrow \int \left(\frac{L}{2\pi}\right)^n d^n k = \int \frac{L^n(m^2)^{\frac{n}{2}-1} dm^2}{(4\pi)^{\frac{n}{2}} \Gamma(\frac{n}{2})}$$

$$d_{\mathcal{U}} = \frac{n}{2} + 1$$

Fractional scaling dim, can be achived in AdS warp space (Stephanov)